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The ordering phenomena of symmetric diblock copolymers at the microphase separation transition
(MST) are studied both by Monte Carlo simulations using the cooperative-motion algorithm for dense
polymer systems in three dimensions and analytically by the random-phase approximation (RPA) apply-
ing the Edwards Hamiltonian approach. The transition temperature is found from an analysis of the
specific heat of the copolymer melt. Besides a phase separation into a definite lamellar structure, a
stretching of the chains and an ordering effect at the MST are observed in the simulations. The RPA is
able to explain this elongation of the chains. Additionally, the influence of vacancies on the location of
the MST and the static properties of the chains are analyzed by theory and simulations. The vacancies
are found to make the melt compatible and to lower the critical temperature.

PACS number(s): 05.70.Fh, 05.40.+j, 61.41.+e, 36.20.—r

I. INTRODUCTION

The investigation of block copolymers is a very recent
field of polymer science. Interesting applications of di-
block copolymers in material science make this field a
matter of interest in experiments [1-8], theory [9-16],
and computer simulations [17-19].

A pioneering work in the theory of the weak segrega-
tion limit (small interaction parameters }¥zN only) was
presented by Leibler in 1980 [20]. This theory uses the
random-phase approximation (RPA) in a macroscopic
version of the Landau theory. The predictions of this
theory could qualitatively explain the experimental
findings on diblock copolymers. Such results concern the
periodic structure which arises in experimental situa-
tions, i.e., for a given composition, and the critical tem-
perature. A more advanced analysis by Fredrickson and
Helfand [10] included the fluctuations of the order-
parameter correlation in the well-known Brazovskii ap-
proximation [21] and gave a description of the structures
of asymmetric diblock copolymers which is in better
agreement with experiments. A correction to the critical
temperature, which is inversely proportional to the de-
gree of polymerization N, was also found. Common
Monte Carlo lattice algorithms for the simulation of po-
lymer melts use a certain amount of vacancies to relax
the ensembles of configurations, in order to respect the
excluded volume constraint [17-19,22-24]. To our
knowledge there are two algorithms presented in the
literature which are capable of simulating dense polymer
melts: the bond-breaking algorithm [25] and the
cooperative-motion algorithm (CMA) [26—30]. Only the
latter can simulate well-defined monodisperse polymers in
the static limit. In the following sections we investigated
the thermodynamic behavior of symmetric diblock copo-
lymers by simulation using the cooperative-motion algo-
rithm. This represents the first time, to our knowledge,
monodisperse diblock copolymer melts in the limit of
density ¢ =1 have been simulated on a lattice. We also
study the influence of vacancies on static properties and
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on the critical behavior. The paper is organized as fol-
lows. The following section describes the cooperative-
motion algorithm. In a theoretical section the basic
equations for block copolymers are presented; expres-
sions for structure factors and effective interaction poten-
tials between arbitrary monomers are given. These
mean-field predictions are analyzed with respect to the
numerical data presented in Sec. IV. It is demonstrated
that the mean-field predictions can be verified very well.
The RPA is then extended to the case where vacancies
are important. The stability limit and the effective poten-
tials depend strongly on the vacancy concentration.
These results are also compared to simulation data, in
which the vacancy concentration is varied.

II. THE COOPERATIVE MOTION ALGORITHM

The cooperative-motion algorithm allows one to simu-
late polymer melts at a density =1 on a lattice [26—-30].
The lattice is completely occupied by monomers and the
monomers of each chain are connected by (¥ —1) bonds
of constant length a. To take into account excluded
volume effects we restrict the chain configurations to
self-avoiding and mutually avoiding walks. In the case of
diblock copolymers two chains of either monomer type 4
or type B are connected to form the copolymer with
length N=N ,+Njy. The two types of monomer are par-
tially compatible and we introduce interaction parame-
ters €;;, where the choice € , y =egp=0and e ;p=£=11s
taken without loss of generality. Each monomer can
therefore be labeled by a spin variable o =+1,—1. The
energy of one monomer is the sum over all g nearest
neighbors which have a different spin variable; in the case
of an 4 monomer the sum is taken over all B monomers
out of g next neighbors, E(4)=3 pe(y€ 4. The nature
of the algorithm is cooperative, as in dense systems (¢=1)
a segment of one chain can only be moved by simultane-
ously moving other segments of different chains [see the
dashed bonds and the monomers (squares) of Fig. 1(b) in
comparison to Fig. 1(a)]. In another paper [30] the tech-
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(b)

FIG. 1. (a) Configuration of a copolymer melt. The white
and the black circles characterize the different types of mono-
mers. (b) New configuration of a copolymer melt. The squares
characterize the monomers that have been moved, while the
dashed lines represent the moved bonds.

nical realization of the algorithm for generating to static
properties of different polymer systems is described. To
summarize, we mention that we always move chain ele-
ments consisting of several monomers as a whole. How it
is handled in practice is described in detail in [30]. Mov-
ing a chain element alters the local energy because the
monomers contact new neighbors. We identify the at-
tempt to move a chain element as one Monte Carlo step,
which has been proven to be sensible in the CMA. We
now use the common Metropolis test [31] for importance
sampling by looking at the energy difference
AE(element)=Eg ., — E; ;a for the whole chain element,
which as been reorientated. At a given temperature T,
the Boltzmann factor p =exp[ —AE(element)/kgzT] is
compared with a random number ,0=r < 1. If p 27, the
new configuration has been accepted and another chain
element will be reorientated. Finally several chains have
found a new configuration [Fig. 1(b)] and at this stage we
calculate thermodynamic equilibrium quantities. With
this procedure of implementing energetic interactions in
the algorithm, it is guaranteed that the principle of de-
tailed balance is fulfilled. For the case of codimers the al-
gorithm has been shown to be ergodic [32].

The following results are obtained by simulations on a
fcc lattice, where the bonds have the length a =Vv'2. The
possible bond angles are a=60°, 90°, 120°, and 180° with
degeneracy d,=4,2,4,1. Every monomer has ¢g=12
nearest neighbors in the simulation. We use a lattice of
size L3=20° containing 4000 monomers, and vary the
chain length N =20,32,50 and extend these simulations
for some temperatures to chain lengths N=100. To
reduce boundary effects, the usual periodic boundary
conditions have been employed.

III. THEORY —DENSE MULTICOMPONENT MELT

The crucial point of this section is to present a parti-
tion function (or a generating functional) from which col-
lective and single chain properties can be calculated
simultaneously. These quantities will be required to in-
terpret the results of the simulation using the CMA. The
method goes back to Edwards and Muthukumar [33] and
has been used by Ohta and Nakanishi [34] for semidilute
polymer solutions. It is outlined here for multicom-
ponent systems including blends and diblock copolymers.
Indeed, as it will become obvious later, the method ap-
plies also for more general situations.

We start from the Edwards Hamiltonian for a z-
component polymer system
2

_ z Vo NO aRg( s)
pr= a§1 a§1 fo @ s
z v NO N
_|_ ’
by S ds ds

XV7[R(s)—Rjs")] .

(1)
The first term is the Wiener measure, where it has been
assumed that the unperturbed chains are Gaussian and
the second term represents the binary interactions be-
tween two chain segments R (s) and Rg(s’) belonging to
chains a,f of type o,7. The contour variable s ranges
from O to N?,N7, respectively. There are v7 (v") chains
of type o (1) per unit volume, and their degree of poly-
merization is N? (N7). For block copolymer melts Eq. (1)
holds also, since it can be reformulated more convenient-
ly if in (1) the mixed interaction term is written as

zfof”ds ffjfvds’VAB[R;‘(S)—Rg(s')] , @)
a,B

where fN is the fraction of 4 monomers and (1— f)N the
fraction of B monomers within one copolymer. More-
over, z is set equal to 2. The partition function of the sys-
tem is defined as the functional integral

—BH([RI(s)})

Z= [ I DR(s)e (3)

o,a,s

The quantities which are experimentally available are
structure factors defined as

S‘”(k)=<23 fON fON ds ds,eik-[Ra(s)—RB(s’)]> ’ @)

which describe the composition and density correlations
in the systems. The average { ) has to be taken via the
Boltzmann factor e “%%. To reformulate (3) into a more
convenient form, density variables are introduced and the
partition function can be rewritten by using the identities

1= [ [I2p¢115 [pz—é S
o,k k,o a=1

ik-R7(s)

(5)

Simultaneously the functional & functions can be
represented by auxiliary Edwards random fields ®(r), i.e.,

[18(p0)= [ Ddgexp [iS @ﬁp‘.’.k] ) (6)
k k
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Some algebra leads to the partition function Z,

Z= [ DRDp DD, e ~PHRLIPLI®D -
with a Hamiltonian
z a 3R? 2
= S Ne @ . [N o 4
Bﬂ 0§1 agl [ 0 ds as +lf0 dsq) (Ra(s))
+2 ngpgplk—i 2 Qgp‘lk . (8)
k k

The first term is the Wiener measure and the second term
is the interaction of the polymer (o,a) with an external
random field. The advantage of Eq. (8) is that the binary
interactions between all monomers of all species have
J

oRY
as

II lffDRg(s)exp

a,o

NU
— ds
0

where the Green functions G(r,r’,N,[®7]) satisfy the
standard differential equation

—a———V2+i(I>(r)

3N G(r,r’',N,[®7])=8(r—1')8(N) ,

(10)

which describes a polymer in an external random poten-
tial. For one-component excluded volume chains this has
been analyzed in detail by Edwards [37] and later by Em-
ery [38] and Freed and Kholodenko [39]. From Egs.
(8)—(10) the standard model for the ¢* theory for dilute
homopolymer solutions can be calculated very easily
[40,41]. Consequences of this for dilute diblock copoly-
mers will be discussed separately.

The integrals over the Green functions can be exponen-
tiated and the Hamiltonian has the following form, as
given by Ohta and Nakanishi [34] for solutions:

I1 [ DR(sdexp | — [ as | OB

noting that (® ),=0, where

ORY(s)
ds

(x)o= [ TIDRx exp

1

NO’
— ds
2,
This leads directly to the RPA formulation since
(PD))=3 O, P_,S?. (k),
k

2
[N -
____I —i [ ds ®(RZ(9))

been decoupled. These two terms represent nothing but
the partition function of chains in a complex random
field, as we will see below. The last two terms are the ex-
cluded volume energy and the coupling of the auxiliary
fields ®(r) with the density fluctuations. Carrying out
the p-integrals we are left with a generalization of the
standard Edwards transformation here generalized to ar-
bitrary multicomponent systems. Equations (7) and (3)
are now exactly identical and some useful exact identities
can be calculated as has been noted by Oono [35] and
later applied in [36].

It is interesting to realize the important advantage of
Eq. (8), which is that the originally coupled integration
over the RJ(s) variables has been decoupled to single
chain contributions only, since the R part is determined
by the identity

2
; NU o J— ’ s ’ o o
] —if dsCD(Ra(s))J lzgf [ drdrGe(r,r',N°,[®°]), ©)

[
H=3 p¥p—i®p
k

+2v”lnf fdrdr'G"(r,r’,N”,[CD"]) , (11

where
Vi Vi = Vi
Vai Voo o0 Vo,
Yxy=1|... ... . .| (12)
Va Vo 0 Va
O=(P,,P,,...,P,), (13)
P=(p1p2 - ->pP;) - (14)

The last term of Eq. (11) can be expanded in terms of
higher-order vertex functions [20,36]. For the purpose of
the present paper it will be enough to approximate
lnf fdr dr'G(r,r’,N?,[®?]) by the lowest order, which
corresponds to the second-moment approximation of Eq.
9),i.e.,

P> fONads fONTdS'<¢‘(R§(s))<l>(R§(s')))0 :

~exp
o, 7 a,B
(15)
(16)
a7

yielding the effective Gaussian Hamiltonian in statistical mechanics,
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BH=Z ®S{® _+p V1 p —iPyp_y -
k

(18)

The correlation functions {pgp”,) and (PZP”,) describe now the structure factors and the effective potentials, re-

spectively, i.e., Benoit’s equations
Sk)=(S""'+¥)”
and

_Qeﬂ'(k)=(§0+z-—l)—l

(19)

(20)

as a matrix generalization of the result given by Edwards and Muthukumar [33] and Ohta and Kawasaki [42]. Equa-
tion (20) has not been proven yet, but it can be done very easily by separating out several chains of types o and 7 in Eq.

(8), and integrating out the ®’s and p’s providing, e.g.,

2
o DT N° aR‘{(s) NT aRl(S) o - ot
F\(RE,R)= [ Tds | —— | + [ "ds f f "ds ds'UST [RY(5)—R{(s")]
NT NT ’ ’ (5 o T ’
+f0 fo dsds’Ui‘f[RI(s)——RI(s )]+2f0 fo "ds ds'USE[R(s)—R(s")] , 1)

where U, are precisely the matrix elements of the ma-
trix (20). Nevertheless these are some severe subtleties in
deriving Eq. (20) by this method and the original deriva-
tion of Edwards, as will be shown in a forthcoming publi-
cation. So far the formulation is general for arbitrary
multicomponent systems and the specification to diblock
copolymers is simple. Equation (21) reads in this case

dR(s)

H(R)= fONds >

+fdesfde "USLIR 4(5)—R 4(s")]

+f dsf ds'U

+szd f ds'USGIR 4(s)—Ry(s)]  (22)

RB(S)—‘RB( ]

and
Sk)= Sia Sin (23)
N S34 Sps
V()= Vasa Vas
- Vea Vss
| 4 V+xr
Vire ¥ (24)

The inversion defines the effective potential (20) between
two arbitrary monomers in the melt, and also a tagged
chain in the melt,

[1—2xpS9p(k)]/detS°®

U (k)= , 25)
a4 S0 /detS°—2x 5

[1—2xpSY (k)] /detS®

Usf(k)= , 26

BB 59 /detS°—2x )
14+2x£S%5 (k)] /detS®

Uiﬂé(k)z [ XrSap(k)] 2 @7)

S? /detS°—2xf
which has been given in [36,43]. Note that these effective

f
potentials have unphysical singularities at the microphase
separation condition. This is a result of the mean-field
approximation on the Gaussian level.

The “bare” structure factors in Egs. (25)-(27) are given
by (f is the volume fraction of species A)

8% 4(k)=(N,4+Nz)P,(f,k), (28)
S%5(k)=S89 ,(k)=(N,+Ng)P 5(f.k), (30)

where P (f,k), Pp(1—f,k), and P p(f,k) are the in-
tramolecular form factors for the two blocks 4 and B
and the intramolecular interference form factor between
the blocks. These form factors are conveniently
represented by modified Debye functions, if we assume
Gaussian unperturbated copolymer chains for the bare
state

PA(f,k)=—27(e‘f“+fu——l), 31)

u

B(l—f,k)=%[e"“—f’“+(1—f)u—1], (32)
u

P p(f, k)=

In this notation we set u =k2Rg2 with R, the radius of
gyration of the whole diblock copolymer. Figure 2(a)
shows the effective potential of one block of a symmetric
diblock copolymer (i.e., f =1) in k space, which is attrac-
tive, whereas the effective potential U< (k) is repulsive
[Fig. 2(b)].

It can be shown easily that the potential U
(o,7= A, B) is not restricted to monomers on one chain.
Ueﬂr is the effective potential of two arbitrary monomers
of type 0,7 in the melt, i.e.,

1P (1,L)—P,(f,K)—P,(1—f,K)] . (33)

d3k ik-(RA(5)—RE(s")

USHIRA(s)—RE(s’ ’]_fmm (ke

(34)

The Fourier transform (FT) in Eq. (34) cannot be carried
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out analytically without making uncontrollable approxi-
mations. Numerical FT can be performed and shows os-
cillating behavior with a characteristic period roughly to
the radius of gyration, which is the only relevant length
scale in the one-phase region above kzT,. Our main dis-
cussion is restricted to the representation in k space.

A perturbation calculation of R, has been outlined in
Refs. [37,44], but it is not clear to which distance
(Xo—XF) its results are reliable, due to the unphysical
singularity. Nevertheless it has been shown (and is physi-
cally obvious) that the individual blocks shrink near the
microphase separation transition (MST) [43] as in poly-
mer blends [44], since both UST, and USY change sign
near the MST. The USE; potential is always positive. The
two blocks separate from another, i.e., the whole chains
stretch at the critical point. These arguments are strong-
ly supported by this work and by simulations of Fried
and Binder [18] as we will show below.

IV. RESULTS —DENSE MELT

In the athermal limit, i.e., &/ kg T —0, no interactions
between the monomers apart from the excluded volume
constraints are present. Starting from an athermal
configuration, we cool the system by lowering the tem-
perature to the simulation temperature. The ensembles
of configurations at the different temperatures are created
independently. As an indication that our system which
consists of 7,5 .mers Chains is relaxed, we consider the
correlation of the end-to-end vector of the total chain

Cena(Npcs)
1 "poymers  Ring(Mpcs =0)-Ring(nycs)

IRénd(nMCS =0)| ]Rénd(nMCS )|
(35)

n polymers ;=1

and take twice the n s Monte Carlo steps (MCS) needed
for a decay to zero as thermalization steps. The number
of Monte Carlo steps is strongly dependent on the tem-
perature kp T /¢ and on the chain length N. For example,
9000 (360 000) Monte Carlo steps per chain (MCS/chain)
are needed for N=20 and kzT/e>kpT,/c
(kgT /e <kgT,/¢), if we define a Monte Carlo step as an
attempt to move a whole chain element. (As we only
concentrate on static properties, this somehow arbitrary
definition does not affect our results, and is only chosen
for a proper counting of the simulation steps.) During
those steps, all chains have turned on average about 180°
in orientation and we expect the chains to have found
their equilibrium configuration at this given temperature
kg T /e. After this thermalization, sampling starts for the
thermodynamic averages every 1000 MCS/chain over a
Monte Carlo step span of between 500000-1 500000
MCS/chain. The computer runs were carried out on
DEC stations 5000/125 and 5000/200.

To compare our results to those of the literature we no-
tice the connection between the Flory Y parameter and
the temperature kz T /€ in our simulation. It is given by

ii{—?—‘i . (36)
B

It

XF

In our case e=¢ 5, 4 =12, and kz=1. Leibler’s mean-
field prediction [20] for the location of the critical point is
(x#N),.=10.495, and the result of Fredrickson and Hel-
fand, which includes fluctuations of the order-parameter
correlations, postulates (yyN),=10.495+41N 173 [10].
We therefore expect kzT /eN to be a good scaling vari-
able for large chain lengths N.

In the preceding section we derived the intramolecular
potentials UL, or USY [Fig. 2(a)], and U, [Fig. 2(b)].
The effective force
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FIG. 3. Temperature dependence of the distance between the
centers of mass of the two blocks. Chain lengths are N =20, 32,
50, and 100.

F =

oT

VU (r)=3 ikUT (k) 37
k

acting between the monomers o, 7 of different blocks of
one chain in the medium of all others is repulsive, while
the force acting between the same species of monomers in
one block is attractive. The simulations confirm these
mean-field results as the distance between the centers of
mass of the two blocks,

RABz[((Rgm._Rgm.)2>]l/2 > (38)

increases according to the repulsive effective potential
(Fig. 3). Here, RS is the center of mass of a single
block a= 4, B, while the radius of gyration of one block
R/ remains almost constant (Fig. 4). Note that the scale
for RgA is different from Fig. 3.

As already mentioned in the preceding section, one
would expect [43] the two separate blocks to behave like
A and B homopolymers in a blend due to the attractive
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FIG. 4. Temperature dependence of the radius of gyration of
one block. Chain lengths are N =20, 32, 50, and 100.
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FIG. 5. Temperature dependence of the radius of gyration.
Chain lengths are N =20, 32, 50, and 100.

effective potential. In this case they are supposed to
shrink. That they do not shrink can be understood by
the relatively short chain lengths and therefore by the
rather small wavelength of the developing structure. The
rather long chains with N =100 show a slight decrease of
the radius of gyration of one block when the temperature
is decreased. The radius of gyration of the total chains
(r; being the space coordinate of the monomers)

1 ”polymers

R =

N 172
g 2 (r5'~Rf:.m. )2] (39)

n polymersN i=1 j=1

shows an increase by 10% (Fig. 5), and the end-to-end
distance of the chains

1 "polymers 172

S (ry—r1))?

polymers =1

R end (40)

n

increases remarkably as well (Fig. 6). Similar results have
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FIG. 6. Temperature dependence of the end-to-end vector.
Chain lengths are N =20, 32, 50, and 100.
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FIG. 7. Radius of gyration vs chain length. Both in the
athermal limit and in the finite temperature range the chains are
found to be Gaussian, as the slope of the curves have been found
to be approximately v=0.51.

already been found in experiments [45,4].
In the athermal limit the diblock chains are expected
to behave in a Gaussian manner:

R,~N", (41)
where v=1 is predicted. An evaluation of InR, vs InN
(Fig. 7) yields an exponent v=0.510, which is very close
to the random walk. Therefore in uniform dense melts
(e ,5=€=0=)r=0) excluded volume effects are
screened. But also in the finite temperature limit (y z70)
and even at a temperature just below the critical value
the exponent v=0.511 indicates Gaussian behavior of the
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chains (also Fig. 7). This shows that the exponent v is
not altered for xYo— X >0. In the strong segregation lim-
it we could expect v=2 [42], but our simulations do not
confirm this. Again the short chains could be responsible

for this since the 2 result holds only in the scaling limit

N-— .

There are several possibilities to determine whether or
not the two species are demixed at a given temperature.
The simplest way is to look at the monomer distribution
in a small subvolume of the system. In the disordered
phase the probability distribution of finding a monomer
of species A4,p(¢ ), in a box of volume /*® is Gaussian.
At the microphase separation transition, two phases rich
in either species 4 or B appear and the probability dis-
tribution become bimodal (Fig. 8). One has to choose the
subvolume /3 carefully, as it should be adapted to the
chain length and by that reason to the periodicity of the
arising structure. In Fig. 8 we see the temperature evolu-
tion of the probability distribution for the concentration
of A monomers p(¢ 4) of chains with N =32 in a subvo-
lume (/ =6)3. The two maxima at temperatures below the
microphase separation correspond to the equilibrium
concentrations of the two phases at this temperature.
The strong interface effects are due to the connectivity of
the two blocks. This hinders a finite-size-like analysis for
the location of kg T, /€ as in [46].

Another possibility is to mark the different types of
monomers by different colors and to view them. Those
snapshots are presented in Fig. 9, where we show four
stages of a diblock copolymer melt (remembering period-
ic boundary conditions we used in this representation).
Figure 9(a) reflects the melt at a temperature far above
from the transition point. The two species are distributed
homogeneously, which is also monitored in the Gaussian

4.5
> l=6
< .. OT = 240
= AT = 16.0
+T = 150
3.5 XT = 13.0
oT = 10.0
3.0
> . U
FIG. 8. The probability distribution of the
2.5 concentration of species 4 in a subvolume /3
changes the shape with decreasing temperature
2.0 (kg =e=1). We present an example for a m(?lt
: of N=32 and box size (/=6). Above the crit-
ical temperature the distribution is Gaussian.
1.5 It becomes bimodal below kz T /€.
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distributed 4 monomer concentration of Fig. 8. A few
temperature steps above kT, /¢ we already observe [Fig.
9(b)] concentration fluctuations, and when we reach
kgT, /e [Fig. 9(c)] first indications of an ordered struc-
ture can be seen. Below the microphase separation tran-
sition for the diblock copolymer melt a clear lamellar
structure is found [Fig. 9(d)].

As a consequence of the microphase separation and the
stretching of the chains, an orientational ordering of the

(c)

chains occurred. We looked at the correlation of the vec-
tor connecting the centers of mass of the two blocks with
an arbitrarily chosen direction, for example, the (1,0,0)
direction. In the disordered state the second harmonical
Legendre polynomial (i.e., the orientational parameter) f,

f=13(cos?3)~-1), 42)

is fluctuating around zero, while at a certain temperature
this orientational parameter reaches a finite value (Fig.

(b)

(d)

FIG. 9. Snapshots of an N=20 diblock copolymer melt at different temperatures. The green and white symbols refer to the
different types of monomers, whereas bonds have been omitted for a better overview. The value of k5 T /¢ is taken from the specific
heat (Fig. 11) for N=20. (a) At k3T /e=20>>kpT, /¢ the melt is homogeneously mixed. (b) Above k5T, /e (kT /e = 14) composi-
tional fluctuations can already be observed. (c) At the critical point of the melt, a lamellar structure arises (k5 T/ ~9.0). (d) A few
temperature steps below kT, /€ (kp T /e=8) a clear lamellar structure has been developed.
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10). This effect can be understood by the following intui-
tive picture: as the two types of monomers separate into
two homogeneous phases rich in either species 4 or B,
and as the chains become stretched at the microphase
separation transition, the chains have to order with
respect to their mean axis, as they are close packed. Due
to this ordering, a finite orientational parameter can be
observed. This has novel theoretical impact special for
the nature of the MST in block copolymers. A detailed
study has been performed and will be published separate-
ly [47]. This ordering temperature depends slightly on
the chain length, as for increasing chain length it is shift-
ed towards lower temperatures. It is found to be in the
range kpT,/eN~0.45-0.5. During the simulation, the
entire lamellar structure reorientates several times in the
simulation box. For the sake of simplicity we considered
the orientational parameter only in respect to an arbi-
trarily chosen direction and not to the mean direction of
the chains. Therefore the shape of the curve in the criti-
cal region must not be interpreted as a universal shape.

The specific heat Cj, is expected to show a peak at the
critical temperature for phase transitions of either first or
second order in finite systems. According to usual Monte
Carlo simulations the specific heat is calculated via the
fluctuation-dissipation theorem

Cy= 1

= TZ((EZ)—(E)z).
B

(43)

In analogy to spin systems we plot the value of the
specific heat per chain (Fig. 11). Analyzing the specific
heat yields a value for kzT,./eN which is dependent on
the chain length. The transition region can be identified
to be kzT,/eN=0.45-0.5. Comparing it to the order-
ing temperature for the orientational parameter, we find
that they seem to coincide. In view of Ref. [47] this has
to be reexamined. Our simulation results expressed in
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FIG. 10. The orientational parameter f reaches a finite value
at the ordering temperature, when the system is cooled down.
The transition point is slightly shifted towards lower values of
kpT/cN for increasing chain length (N=20, 32, and 50). It
seems to coincide with the critical temperature. The lines are
only guides to the eye.
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FIG. 11. The position of the maximum of the specific heat.
The arrows denote the critical temperature k3 T,.(N) /e for the
different chain lengths. It is slightly shifted towards lower
values of k3T /eN for increasing chain length (N =20, 32, and
50). The lines are only guides to the eye.

0.60

terms of the Flory parameter locate the transition regime
at (ypN).~19.8-22.2, whereas the predictions of
Fredrickson and Helfand for the given lengths yield
(¥gN).=21.62-25.59. The critical temperature, which
is inversely proportional to (YzN),, is in rather good
agreement with the prediction of Fredrickson and Hel-
fand (Fig. 12); the values for k3T, /¢ lie only about 5.6%
to 13.3% above their values. This is not necessarily ex-
pected, as the Hartree approximation used by Fredrick-
son and Helfand should be correct for N2 10°. Even
though these authors argue that for block copolymers
their estimation should apply for chain lengths of
N ~10* our case is below that limit, and it is rather
surprising that the theory explains our results not only
qualitatively well, but also quantitatively.

50 :"_'""l T T T T
2 __  Leibler 3
F Fredrickson—Helfand E
40 . . e
E s o Simulations 3
L 30F
z o ]
=k - E
=~ 20F =
O : 1 1 1 " 1 1 :

10 20 30 40 50 60
N

FIG. 12. Critical temperature in dependence of the chain
length. The solid line represents Leibler’s predictions, the
dashed line is the result of Fredrickson and Helfand, and the
symbols are our simulations results, taken from the specific heat
(Fig. 11).
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V. EFFECTS OF VACANCIES
(MEAN-FIELD PREDICTIONS)

Two basically different types of simulations have been
made: first at density ¢ =1, i.e., no presence of vacancies,
and second at ¢ < 1, i.e., presence of vacancies. The RPA
is appropriate to deal with the situation [44,48,49]. Here
we recall early work of Benoit and Benmouna [48] which
was not intended to describe the effect of vacancies but
for solvent molecules, which play essentially the same
role. The basic difference is that the vacancies can be
treated as a third component in a binary system (A4 and B
molecules). The Edwards Hamiltonian in matrix formu-
lation is then given by [50]

H=p[(S°)"Hk)+V]p, 44)
where
p=(pipp") 45)
and
Sha Sz 0
S%k)=|S3, S%% O |, (46)
o o S
VAA VAB VAV
VK)=|Vss Vez Var |, 47)

1

4% 4%
Qexvol: 1 1

where S? is the structure factor of the vacancies. Since
they are distributed at random and they are assumed not
to have any structure it can be written simply as

Sy=¢y , (48)

where ¢ is the volume fraction of the vacancies. The
Vo (0,7= A,B,V) are the potentials between the
different components. The effective three-component sys-
tem is now characterized by

d ()t dp(r)t+dy(r)=1 (49)
or
pr=—(pi+p{) , (50)

where ¢,(r)=¢,+p?(r). The condition (50) leads to an
effective two-component Hamiltonian [50] with effective
interactions, i.e.,

HE=pS p (51)
with p=(pd,pg) and an inverse correlation matrix
STUKk)=S ' + Uil » (52)
with
4 1 SgB _533
§eﬁ(k)=-5e—t§ —5% S9, (53)

and the excluded volume matrix

1
—+ (V44 +VSS—2VAS) _—+VSS+VAB_VAS_VBS

, (54)

— +VsstVuypg—Vas—Vas 57— F(Vpp+Vsg—2Vps)

3% by

which is the usual excluded volume matrix if ¥ is a sol-
vent S [50]. For our purpose and without loss of general-
ity we may set

V,,=0 VYo,r except V pz=V+xr, (55)

i.e., the vacancies do not interact with any other com-
ponent. (For a more general treatment see Kehr, Binder,
and Reulein [51].)

Then we have

QTII; LV +XF
U exva™ 1 N 1 . (56)
b by
The stability criterion is given by
detS~!'=0. (57

This yields the mean-field shift of the spinodal of block
copolymers on a simple basis by the evaluation of the
determinant. We keep the terms to order Y% in order to

r

include the case that ¢ is not close to 0, but eventually

< 1.
V=3
SgB S?w 1
+1 — — 4+
detS° dets® | ¢y AT
det =0.
_San 1 Saa 1
dets® ¢, F detS® &y

(58)

Equation (58) produces the quadratic equation for the
stability condition

Sia 1 || SB 1
detS® ¢y | | detS® oy
2
SSB 1
S — 4+ =0. (59)
dets® | ¢y F

Therefore the critical x5 value is given by
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g0 50 1/2
X (k)= _A_"()+L BB +__1_
detS° &y | | detS® ¢y
S _ 1 ©0)
detS® ¢y

In the limit of ¢, —0 the square root can be expanded
and simple algebra leads to

S(k)
detS (k)

S 44588
¥ (detS°)
At ¢, =0, x.(k) obeys the classical criterion of Leibler

[20].
For a binary blend (S5 =0) the critical value y (k=0)

1
2

X (k)=

+0(¢2V)] . (61)

which is to order of ¢, equivalent to

by 1
+2(Xo—xr)=
b 165 NN, 2 X0—XF)=0, (63)

where 2y,=1/N4¢ 4+1/Ngdp. Thus the well-known
result, that vacancies produce a slight compatability
enhancement, has been reproduced. Again for ¢,,—0 the
classical condition for the phase separation on the macro-
scopic level is recovered. The structure factors can be
given in the usual sense, for example, we find for S , 4 (k)

S9s(k)
from (60) reads S, (k)= hll BB . 1 ’ (64)
: : ) ) 2 det(S .7 +U o vo1) | detS ¢y
XT VN6 by || Nabs oy by’
(62) which can be rewritten as
|
S .4(k)
T — o
_ detS
S qalk)=——5 5 5 7 (65)
Sa4 1 Sps 1 S 1
st 5t o0 |7 | e T oy T
detS® ¢y | | detS®  dy detS® oy

Again for ¢,,— 0 Leibler’s result is recovered.

The next step is to show the effect of vacancies on the effective potentials. This can be done along the same lines as

outlined in Sec. III. The effective potentials are given by

geﬁ‘z(seﬁ'_'_g;(l'ol)_l . (66)
Carrying out the matrix inversion we find for the UT potentials
1—(2xp+dpx%)SH
U, (k)= g Xrt+®yXF)Spp -
detS® | — 5 =2 +uX}) | T 20 XrShn + 4y
and
2xp+éyx3)Sis+ +1
U (k)= - XrtovXp)Sap+ovXr 68)
T
detS° 50 —Q2xrt+oyxE) | +26yxrSSp oy

which reduce to all limits discussed so far, i.e., blends
8% =0, and incompressibility ¢, —0.

VI. RESULTS —EFFECTS OF VACANCIES

As most of the algorithms available for the simulation
of polymer melts need a certain amount of vacancies ¢
to generate new polymer configurations [17-19,22-24],
we analyzed the influence of vacancies on static thermo-
dynamic properties of the copolymer melt. The vacan-
cies are introduced as a good solvent, which means we
have no interaction between the polymer and the vacan-
cies and among the vacancies themselves,

[

€ y=€py=¢€py=0. The vacancies will not separate
from the polymers when the system is cooled.

A strong effect is that the chains become more extend-
ed in the presence of vacancies, more so the higher the
vacancy concentration, both in the athermal limit and at
finite temperatures. In Fig. 13 the temperature depen-
dence of the radius of gyration R, of a melt of copolymer
chains with length N =20 is shown for vacancy concen-
trations ¢, =0.2,0.4 compared to the results of the dense
melt ¢, =0.0. But if we plot the radius of gyration
R (kpT/e,N) of the given systems at temperature,
kpT /e relative to the value in the athermal limit
Rg( «©,N), no tendency can be detected that the chains
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FIG. 13. Radius of gyration for N=20 and different vacancy
concentrations ¢, =0.0,0.2,0.4. In the presence of vacancies
the chains are swollen.

are stretched significantly more in the presence of vacan-
cies. The curves seem to fall onto one master curve for
all vacancy concentrations (Fig. 14). We conclude that
the chains are swollen by the vacancies and that this
effect is equal for the athermal limit and for finite temper-
atures. It can be observed for all radii presented in Sec.
Iv.

While considering the specific heat (Fig. 15) we find
that the maximum of Cj, is shifted towards lower temper-
atures for the systems with vacancies. The critical tem-
perature for the system with 20% vacancies is lowered by
3.4-6.9 % compared to the dense system, while the sys-
tem with higher vacancy concentration ¢, =0.4 shows a
transition temperature about 6.8—-11.9% below the
values for the simulated dense melts. Hence, the higher
the vacancy concentration is, the lower the critical tem-
perature for a given chain length. This observation

T M T R B T N T
N = 32
1.20F + &, = 0.0 T
/8\ o ¢, = 0.2
\2:1‘15L_ A ¢V=O‘4 .
ol &
&
o 1.10F 30, 4
E + + 54O
X
Z 1.05F %@ 7
« ¢$ 4] 2
1.00 + % & 4
0.30 0.40 0.50 0.60 0.70

(ke T)/(e N)

FIG. 14. Radius of gyration for N =20 and different vacancy
concentrations ¢,=0.0,0.2,0.4, normalized to the value at
infinite temperature. The vacancies seem not to amplify the
temperature-dependent stretching effect. Within the range of
scattering the data seem to coincide on a master curve.
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FIG. 15. The specific heat for N=20 and different vacancy
concentrations ¢,,=0.0,0.2,0.4. The position of the maximum
is shifted towards lower temperatures with increasing vacancy
concentration. The vacancies reduce the incompatibility be-
tween the two species of monomers. The lines are only guides
to the eye.

confirms the predictions of Eq. (59), that the vacancies
produce a slight compatibility enhancement. At constant
vacancy concentration the relative shift of the critical
temperature for the different chain lengths is bigger for
long chains (N =50) than for short chains (N =20).
Though species A4 separates from species B at the criti-
cal temperature given by the specific heat Cp and the
chains stretch, the orientational temperatures from Fig.
16 seem to be lower than the critical points from Cj for
all chain lengths observed (Fig. 16). This phenomenon is
not easy to understand, as the vacancies are incorporated
in the chains and do not leave more space for the
stretched chains to lie in a disordered configuration for
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FIG. 16. The orientational parameter f for N=20 and
different vacancy concentrations ¢, =0.0,0.2,0.4. The ordering
temperatures are shifted slightly more towards lower tempera-
tures with increasing vacancy concentration than the position of
the maximum of the specific heat. The lines are only guides to
the eye.
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lower temperatures. We plan to present an extented
theoretical paper on this effect which includes other
correlations than the density-density correlations. It can
be shown explicitly that the orientational effects have a
different critical temperature as given by the collective
properties and the specific heat. It will also be shown
that this is a typical copolymer effect and not present in
blends for instance. It has also much impact on the dy-
namics of these systems. As already mentioned in Sec.
IV the shape of the orientational parameter curve must
not be understood as a universal law, as the correlation of
the vector connecting the centers of mass of the 4 and
the B block is taken only in respect to an arbitrarily
chosen direction, i.e., the (1,0,0) direction, and not to a
mean direction of the copolymer axes.

VII. SUMMARY

The thermodynamic behavior of diblock copolymers
near the microphase separation transition has been stud-
ied in this paper. Using a random-phase approximation
we could derive effective potentials UT that describe the
effective interactions between two arbitrary monomers of
the different species o,7 in the effective medium of the
dense melt. With the use of repulsive UST, potential we
can explain the stretching effect of the entire chains that
has been observed in our simulation and also in experi-
ments, from a perturbative view. Nevertheless the validi-
ty of the perturbation expansion is not quite clear, since
the absolute values of the effective potential is not small,
due to the increase near the transition. Therefore other
methods, i.e., variational methods as the uniform expan-
sion method used by Edwards, should be employed. Such
variational methods are also able to change the exponents
(as demonstrated by Edwards for dilute solutions). This
could be sensible, since in the strong segregation limit the
exponent v is suggested to change from 1 to . The
effective potential between monomers of the same species
is attractive and therefore the blocks of our diblock copo-
lymers are expected to shrink. This fact has been found
in the simulation of long chains. The effective potentials
show a nonphysical singularity at the microphase separa-
tion condition. This value for the singularity is located at
the critical point, which is exactly the same found by Lei-
bler in [20].

Once more it should be stressed that to our knowledge
for the first time it was possible to simulate dense mono-
disperse diblock copolymer melts. We applied the
cooperative motion algorithm that will be described ex-
plicitly in another publication [30]. The critical points of
the simulated blockcopolymer melts have been found to
be in rather good agreement with the fluctuation correct-
ed predictions from Fredrickson and Helfand [10] in spite
of principal difficulties for the applicability of the Bra-
zovskii approximation arise in that limit of the chain
length. The same difficulty appears of course in the Har-
tree approximation in classical solid-state physics. Below
those critical temperatures the melts show a clear lamel-
lar structure, as for symmetric diblock copolymers. Very
close to the critical point we observed an ordering
phenomenon in our simulation. The chains tend to order

along a direction normal to the surface of the lamella.
The theoretical description of this effect will be subject to
a following publication [47].

As conventional Monte Carlo algorithms for the simu-
lation of polymer melts need a certain amount of vacan-
cies, we studied their influence on the critical behavior
theoretically and by simulations. We have shown that
the vacancies lower the critical temperature and thus
weaken the incompatibility in the melt.
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APPENDIX A: MEAN-FIELD TREATMENT
OF VACANCIES: GENERAL PROPERTIES

In the main text we have shown that the scattering ma-
trix and the effective potential matrix are given by

S(k)=[S*"Uk)+¥]!, (A1)
UX)=[S%k)+¥~'17!, (A2)
where V is the excluded volume matrix
1 1
— —+
T R
V)= 1 1 . (A3)
+x -
¢y F dy
The stability condition is
detS ~'(k)=0. (A4)

This also yields in general terms detU ~1=0, as can be
proven simply. After elementary matrix manipulations
S 7!(k) can be written as

S '=yu~4sot.

(AS)
The identity det( 4B )=(det 4 )(detB ) yields immediately

det[S ~1(k)]=det[ ¥(k)]det[ U ~'(k)]det[(S°)"!(k)]=0
(A6)
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and since detV70 and det[(S°)~1]0, it follows

det{[U(k)]"!}=0 (A7)

at the critical point and the critical wave vector.

APPENDIX B: MEAN-FIELD THEORY OF SOLVENT:
SHIFT OF THE SPINODAL

Equation (60) from the main text can be readily gen-
eralized to the case of block copolymers in solution with
solvent concentration ¢g¢ (playing the role of ¢ ),

_1
X (k)= > [

0 172
St 1

detS° b

—X
¢s B

L st as) |+ (B1)
¢S (o

where ¥ 45 and x ¢ are the interaction parameters of the
species 4 and B with the solvent. The ¥, , are the usual
combinations of the potentials V. [see Eq. (54) and [50]].
Vacancies are the special case x,,=0, Yo, 7= A4,B,V,
and S=V.
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(b)

(¢c) (d)

FIG. 9. Snapshots of an N =20 diblock copolymer melt at different temperatures. The green and white symbols refer to the
different types of monomers, whereas bonds have been omitted for a better overview. The value of kT, /¢ is taken from the specific
heat (Fig. 11) for N=20. (a) At kT /e=20>>k,T, /e the melt is homogeneously mixed. (b) Above kpT, /e (kz T /€= 14) composi-
tional fluctuations can already be observed. (c) At the critical point of the melt, a lamellar structure arises (kzT/e~9.0). (d) A few
temperature steps below kT, /€ (ks T /e =8) a clear lamellar structure has been developed.



